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1. Review of Basic Modular Arithmetic

We begin by reviewing some definitions and results.
Let a, b, d, n ∈ Z, where n ≥ 2. We say that d divides n, and write d | n, if

n = kd for some k ∈ Z. We say that a is congruent to b modulo n, and write
a ≡ b (mod n), if n | a− b.

We have shown that the congruence is a equivalence relation, which implies that
the set Z can be broken up into disjoint blocks such that every member of one block
is equivalent to a unique integer r such that 0 ≤ r < n. We denote the block that
contains r by r. We let Zn be the set of all congruence classes, modulo n. We have
seen that Zn is a ring under the operations a+ b = a+ b and a · b = ab.

We say that a is invertible modulo n if ac ≡ 1 (mod n) for some c ∈ Z. We have
a theorem which states that a is invertible modulo n if and only if gcd(a, n) = 1.
This is equivalent to the condition that a is an invertible element in the ring Zn.
We have also seen that if a 6= 0 and gcd(a, n) > 1, then a is a zero divisor in Zn,
which means that if a · b = 0 for some b 6= 0.

Set
Z∗n = {x ∈ Zn | x is invertible}.

Then x ∈ Z∗n if and only if x = a for some a ∈ Z with gcd(a, n) = 1. The inverse of
x ∈ Z∗n may be found using the extended Euclidean algorithm. Since the product
of invertible elements is also invertible, Zn∗ is closed under multiplication, so Z∗n is
a group under multiplication.

2. Euler Phi Function

Let n ∈ N with n ≥ 2. The Euler Phi Function is defined by declaring φ(n)
to be the number of positive integers less than n which are relatively prime to n.
Clearly,

φ(n) = |{a ∈ Z | 1 ≤ a < n and gcd(a, n) = 1}|
= |Z∗n|.

Proposition 1 (Euler’s Theorem). Let a, n ∈ Z with n ≥ 2 and gcd(a, n) = 1.
Then

aφ(n) ≡ 1 (mod n).

Proof. If w ∈ Z, let ρ(w) denote the remainder of w is divided by n.
Let X denote the set of all positive integers less than n and relatively prime to

n. Note that if gcd(a, n) = 1 and gcd(x, n) = 1, then gcd(ax, n) = 1; thus if x ∈ X,
then ρ(ax) ∈ X.
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Define a function

ψ : X → X by ψ(x) = ρ(ax).

We claim that ψ is surjective. To see this, note that since gcd(a, n) = 1, there
exists b ∈ Z such that ab ≡ 1 (mod n). Let y ∈ X and set x = ρ(by). Then

ψ(x) ≡ aby ≡ y (mod n).

Thus ψ is surjective, and since X is finite, ψ is bijective; that is, ψ is a permutation
of X, and it follows that∏

x∈X
x ≡

∏
x∈X

ψ(x) ≡
∏
x∈X

ax ≡ aφ(n)
∏
x∈X

x (mod n).

Canceling
∏
x∈X

x from both sides leads to

aφ(n) ≡ 1 (mod n).

�

Remark 1. Euler’s Theorem is a specific case of a more general theorem which
states that if G is a finite multiplicative group and a ∈ G, then

a|G| = 1.

Let n ∈ Z with n ≥ 2. There is a formula to compute φ(n) effectively; we
multiply n by the product of factors of the form (1 − 1

p ), where p is a prime that

divides n. In order to demonstrate that this formula works, our proof will be built
from three lemmas.

Lemma 1. Let p ∈ Z. If p is prime, then φ(p) = p− 1.

Proof. Every positive integer less than a prime is relatively prime to it. There are
exactly p− 1 positive integers less than p. Thus

φ(p) = p− 1.

�

Lemma 2. Let p, r ∈ bZ be positive. If p is prime, then

φ(pr) = pr(1− 1

p
).

Proof. Then only positive integers not relatively prime to pr are multiples of p
There are exactly pr nonnegative integers less than pr, and exactly one out of every
p of them is a multiple of p, so exactly one out of every p of them is not relatively

prime to p. Thus there are
pr

p
= pr−1 such integers; the rest of the positive integers

less than pr are relatively prime to p. Thus the number of integers relatively prime
to p is

φ(pr) = pr − pr−1 = pr
(

1− 1

p

)
.
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Lemma 3. Let m,n ∈ Z with m,n ≥ 2. If gcd(m,n) = 1, then

φ(mn) = φ(m)φ(n).

Proof. Let ρ : Zmn → Zm × Zn be given by ρ(c) = (c (mod m), c (mod n)). To
show that ρ is surjective, let (a, b) ∈ Zm×Zn. By the Chinese Remainder Theorem,
there exists a unique c ∈ Z such that 0 ≤ c < mn and

c ≡ a (mod m) and

c ≡ b (mod n).

Thus ρ(c) = (a, b), so ρ is surjective. Now

|Zm × Zn| = |Zm| · |Zn| = mn = |Zmn|,
so ρ is bijective. Since m and n are relatively prime,

gcd(c,mn) = 1 ⇔ gcd(c,m) = 1 and gcd(c, n) = 1.

Thus
c ∈ Z∗mn ⇔ c ∈ Z∗m and c ∈ Z∗n.

It follows that Z∗mn = Z∗m × Z∗n. Therefore,

φ(mn) = |φ∗mn| = |Z∗m × Z∗n| = |Z∗m| · |Z∗n| = φ(m)φ(n).

�

Proposition 2. Let n ∈ Z with n ≥ 2. Then

φ(n) = n
∏
p|n

(
1− 1

p

)
,

where p ranges over the set of distinct prime factors of n.

Proof. By the Fundamental Theorem of Arithmetic, n may be expressed as a prod-
uct to prime power factors:

n = pr11 · p
r2
2 · · · p

rk
k ,

where p1 < p2 < · · · < pk are the distinct prime factors of n. Since these distinct
primes are relatively prime to each other, the previous lemmas imply that

φ(n) = φ(pr11 )φ(pr22 ) · · ·φ(prkk )

= pr11 (1− 1

p1
)pr22 (1− 1

p2
) · · · prkk (1− 1

pk
)

= pr11 p
r2
2 · · · p

rk
k (1− 1

p1
)(1− 1

p2
) · · · (1− 1

pk
)

= n
k∏
i=1

(1− 1

pi
).
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3. Modular Exponentiation

We wish to rapidly compute powers of a where a ∈ Z∗n. By convention, let e
denote the exponent.

3.1. Exponentiation by Squaring. Write e in binary as

e =

t−1∑
i=0

bi2
i,

where bi ∈ {0, 1} and t is the bitlength of e. Making use of the standard property
am+n = aman, we see that

ae = a
∑t−1

i=0 bi2
i

=

t−1∏
i=0

abi2
i

.

This may be efficiently implemented in a computer using bit rotation.

3.2. Exponentiation with Modular Arithmetic in the Base. At each phase
of forming the product above, we may take the residue modulo n, to reduce the
size of the numbers involved. This not only keeps the number within an acceptable
number of bits (we need results less than 32 bits if we are computing with 64 bit
integers), it also can make the computations faster.

3.3. Exponentiation with Modular Arithmetic in the Exponent. If the
base a is relatively prime to the modulus n, Euler theorem applies, so we can work
modulo φ(n) in the exponent. Divide φ(n) into e to obtain e = φ(n)q + r. Then

ae ≡ aφ(n)q+r ≡ (aφ(n))q · ar ≡ 1q · ar ≡ ar (mod n);

taking the rth power of a is bound to be faster than taking the eth power, unless
of course e < φ(n).
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